Related literature. Two-dimensional NMR analysis of this compound shows a preferred orientation of the C4-methoxy group towards the H atom of C3 (Cox, Prieto, Retamozo & Rodriguez, 1989). Details for the isolation are given by Takeda (1941), Diment, Ritchie & Taylor (1967), Calderwood & Fish (1966), Fish & Waterman (1971), Benages, Juarez, Albonico, Urzua & Cassels (1974) and Torres & Cassels (1978). For other spectroscopic data see Mitscher, Bathala, Clark & Beal (1975).

Acknowledgment is made to the EPSCoR program of the US National Science Foundation.

References

BENAGES, I. A., JUAREZ, M. E. A., ALBONICO, S. M., URZUA, A. & CASSELS, B. K. (1974). *Phytochemistry*, **13**, 2891–2892.

CALDERWOOD, J. M. & FISH, F. (1966). J. Pharm. Pharmacol. 18(Suppl.), 119S.

- Cox, O., PRIETO, J. A., RETAMOZO, H. & RODRIGUEZ, M. (1989). In preparation.
- DIMENT, J. A., RITCHIE, E. & TAYLOR, W. C. (1967). Aust. J. Chem. 20, 565-573.
- Enraf-Nonius (1982). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FISH, F. & WATERMAN, P. G. (1971). Phytochemistry, 11, 1866–1867.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MITSCHER, L. A., BATHALA, M. S., CLARK, G. W. & BEAL, J. L. (1975). *Lloydia*, **38**, 117–123.
- TAKEDA, K. (1941). J. Pharm. Soc. Jpn, 61, 63-65.
- TORRES, R. & CASSELS, B. K. (1978). Phytochemistry, 17, 839-840.

Acta Cryst. (1989). C45, 1265–1267

Crystal Studies of Heterocyclic Compounds Containing One Oxygen and Two Nitrogen Atoms. XIII. 5,6,7,8,9,10-Hexahydro-4*H-N,N'*-ditosyl-1-oxa-5,9-diazadibenzo[*b,k*]cyclododecene

BY TOMASZ A. OLSZAK, KLAUS WICHMANN AND HANS BRADACZEK

Institut für Kristallographie, Freie Universität Berlin, D-1000 Berlin 33, Takustrasse 6, Federal Republic of Germany

FRANK WILLIG

Fritz-Haber-Institut der Max-Planck-Gessellschaft, D-1000 Berlin 33, Faradayweg 4–6, Federal Republic of Germany

AND ANDRZEJ STĘPIEŃ AND MIECZYSŁAW J. GRABOWSKI

Department of Crystallography, Institute of Chemistry, University of Lòdż, Nowotki 18, 91–416 Łòdż, Poland

(Received 24 August 1988; accepted 5 January 1989)

Abstract. $C_{31}H_{32}N_2O_5S_2$, $M_r = 576 \cdot 7$, monoclinic, $P2_1/c$, $a = 11 \cdot 358$ (4), $b = 21 \cdot 199$ (6), $c = 12 \cdot 23$ (3) Å, $\beta = 96 \cdot 14$ (2)°, $V = 2928 \cdot 4$ (1·6) Å³, Z = 4, $D_x =$ 1·307 (1) g cm⁻³, λ (Cu K α) = 1·54178 Å, $\mu =$ 18·83 cm⁻¹, F(000) = 1216. Diffractometer data at room temperature, R = 0.044 for 3760 reflections with $I > 2 \cdot 5\sigma(I)$. The 12-membered heterocycle may be considered as consisting of two parts, in chair-like and boat-like conformations respectively, while the tosyl groups are in an *exo,exo* conformation. The heterocycles are arranged along the x axis. **Experimental.** The title compound was obtained by condensation of the disodium salt of bis[2-(ditosyl-aminomethyl)phenyl] ether with 1,3-bis(tosyloxy)-propane. The formula was confirmed by MS, IR and NMR spectra.

Colourless crystals from ethanol at room temperature; crystal size $0.1 \times 0.2 \times 0.3$ mm, Stoe diffractometer using $\theta - 2\theta$ scan technique; unit-cell parameters from 21 reflections, $\theta_{max} = 20^{\circ}$, Cu K α radiation, range of h, k and $l \ 0 \rightarrow 12$, $0 \rightarrow 23$, $-13 \rightarrow 13$ respectively. Total of 4345 unique reflections measured to $(\sin \theta)/\lambda$

0108-2701/89/081265-03\$03.00

© 1989 International Union of Crystallography

Table 1. Final positional and equivalent isotropic thermal parameters $(\times 10^4)$ with e.s.d.'s in parentheses

Table 2. Interatomic distances (Å), angles (°) and selected torsion angles (°) with e.s.d.'s in parentheses

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^{\dagger} a_j^{\dagger} a_i a_j.$									
	x	У	Z	$U_{ac}(\mathbf{\dot{A}}^2)$					
01	2843 (2)	10164 (1)	-926 (2)	691 (13)					
ci	2509 (3)	11114 (2)	558 (3)	614 (20)					
N1	1811 (2)	10725 (1)	1249 (2)	564 (14)					
C2	2109 (3)	10049 (2)	1412 (3)	558 (18)					
C3	1233 (3)	9617(1)	748 (3)	512 (17)					
Č4	1666 (3)	8938 (2)	761 (3)	550 (18)					
N2	2772 (2)	8874 (1)	212 (2)	487 (12)					
C5	2576 (3)	8852 (2)	-1001 (3)	517 (17)					
S1	989 (1)	11066 (0)	2067 (1)	573 (4)					
0101	530 (2)	11633 (1)	1535 (2)	725 (14)					
O102	184 (2)	10599 (1)	2399 (2)	714 (14)					
C101	1895 (3)	11294 (1)	3255 (2)	496 (16)					
C102	2406 (3)	11889 (2)	3328 (3)	599 (19)					
C103	3082 (3)	12068 (2)	4278 (3)	653 (21)					
C104	3270 (3)	11673 (2)	5166 (3)	614 (19)					
C105	2787 (3)	11068 (2)	5055 (3)	690 (22)					
C106	2113 (3)	10881 (2)	4122 (3)	623 (20)					
C111	3914 (4)	11878 (3)	6239 (4)	919 (30)					
S2	3705 (1)	8352 (0)	792 (1)	595 (4)					
0201	4708 (2)	8355 (1)	184 (2)	774 (15)					
0202	3840 (2)	8481 (1)	1946 (2)	768 (15)					
C201	3008 (3)	7603 (1)	603 (3)	567 (17)					
C202	2256 (3)	7402 (2)	1339 (3)	623 (20)					
C203	1715 (3)	6817 (2)	1186 (3)	707 (22)					
C204	1949 (3)	6433 (2)	325 (3)	722 (22)					
C205	2689 (4)	6648 (2)	-413 (4)	845 (27)					
C206	3226 (4)	7235 (2)	-285 (3)	749 (23)					
C222	1417 (6)	5779 (2)	214 (5)	1039 (35)					
CII	2167 (3)	10668 (1)	-1353 (3)	560 (18)					
C12	1650 (3)	10678 (2)	-2422(3)	682 (22)					
C13	948 (4)	11190 (2)	-2784 (4)	804 (26)					
C14	765 (3)	11672 (2)	-2073 (4)	793 (26)					
C15	1253 (3)	11648 (2)	-1002 (3)	669 (21)					
C16	1979 (3)	11144 (1)	-610 (3)	541 (17)					
C21	3544 (3)	9844 (2)	-1606(2)	577 (18)					
C22	3466 (3)	9191 (1)	-1603 (2)	516 (16)					
C23	4193 (3)	8869 (2)	-2264 (3)	666 (22)					
C24	4935 (3)	9183 (2)	-2899 (3)	803 (26)					
C25	5004 (3)	9831 (2)	-2864 (3)	800 (26)					
C26	4313 (4)	10158 (2)	-2202 (3)	726 (24)					

Fig. 1. Atomic numbering scheme.

Fig. 2. Stereoview of the molecular packing, viewed down the a axis.

D1 D2 D2		211 221 41 216 41 33 24 42 22 22 41 1010 22 22 2101 42 20 2001 22 2001 212 22 2001 213 214 215	$\begin{array}{c} 1\cdot 384 \ (4) \\ 1\cdot 390 \ (4) \\ 1\cdot 472 \ (5) \\ 1\cdot 492 \ (4) \\ 1\cdot 523 \ (4) \\ 1\cdot 523 \ (4) \\ 1\cdot 519 \ (4) \\ 1\cdot 492 \ (4) \\ 1\cdot 418 \ (4) \\ 1\cdot 437 \ (2) \\ 1\cdot 435 \ (2) \\ 1\cdot 435 \ (2) \\ 1\cdot 435 \ (3) \\ 1\cdot 430 \ (2) \\ 1\cdot 430 \ (2) \\ 1\cdot 430 \ (2) \\ 1\cdot 376 \ (5) \\ 1\cdot 372 \ (7) \\ 1\cdot 368 \ (6) \end{array}$	C15 C16 C21 C22 C23 C24 C25 C26 C101 C102 C103 C104 C105 C106 C104 C201 C202 C203 C203 C204 C205 C206 C204	C1(C1) C22 C22 C22 C22 C20 C10 C10 C10 C10 C10 C10 C10 C10 C10 C1	5 1 2 3 4 5 5 1 0 2 0 2 0 1 1 1 1 1 0 2 0 3 3 0 4 5 5 5 1 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1.404(5)\\ 1.389(4)\\ 1.387(4)\\ 1.394(5)\\ 1.377(6)\\ 1.377(6)\\ 1.377(6)\\ 1.377(6)\\ 1.377(5)\\ 1.377(5)\\ 1.377(5)\\ 1.377(5)\\ 1.377(5)\\ 1.377(5)\\ 1.377(4)\\ 1.499(5)\\ 1.377(4)\\ 1.499(5)\\ 1.374(5)\\ 1.377(5)\\ 1.379(5)\\ 1.379(5)\\ 1.378(6)\\ 1.388(5)\\ 1.388(5)\\ 1.514(6)\\ \end{array}$
C11 C16 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	01 C1 N1 N1 C2 C3 C4 N2 C5 S1 S1 S1 S1 S1 S1 S1 C11 C11	C21 N1 C2 S1 S1 C3 C4 N2 C5 S2 C22 C101 O102 O102 O102 O102 O102 C201 O202 O202 O202 O202 C201 O202 C201 C202 C12 C12 C13 C14 C12 C13 C14 C12 C12 C12 C12 C12 C13 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	$\begin{array}{c} 118.8 (2) \\ 112.7 (3) \\ 119.4 (3) \\ 119.3 (2) \\ 119.5 (2) \\ 112.5 (2) \\ 111.8 (3) \\ 111.7 (3) \\ 114.2 (2) \\ 113.9 (2) \\ 113.9 (2) \\ 113.7 (2) \\ 116.3 (2) \\ 107.5 (1) \\ 107.5 (1) \\ 107.2 (1) \\ 107.2 (1) \\ 106.7 (1) \\ 106.7 (1) \\ 106.7 (1) \\ 106.7 (1) \\ 106.7 (1) \\ 106.7 (3) \\ 107.5 (3) \\ 115.6 (3) \\ 122.0 (3) \\ 119.2 (4) \\ 120.4 (4) \\ 120.4 (4) \\ 120.4 (4) \\ 121.2 (4) \\ 117.2 (3) \end{array}$	C1 C1 O1 C26 C21 C22 C23 C24 C25 C5 S1 C106 C101 C102 C103 C104 C105 C101 C101 S2 S2 C206 C201 C201 C201 C201 C203 C204 C201 C202 C203 C204 C201 C202 C203 C204 C202 C203 C204 C205 C5 S1 C105 C205 C5 S1 C105 C105 C5 C5 S1 C105 C105 C5 C5 S1 C105 C105 C5 C5 S1 C105 C105 C5 C5 S1 C105 C105 C105 C5 C5 S1 C105 C105 C105 C105 C5 S1 C105 C105 C105 C105 C105 C105 C105 C10	C16 C16 C21 C21 C21 C22 C23 C24 C25 C26 C22 C101 C101 C101 C102 C103 C104 C104 C104 C104 C201 C201 C201 C201 C201 C201 C201 C202 C202	C11 C15 C22 C22 C23 C24 C25 C26 C21 C21 C23 C102 C102 C102 C103 C102 C103 C105 C105 C105 C202 C203 C204 C203 C205 C205 C205 C205 C205 C205 C205 C205	$121 \cdot 4 (3)$ $121 \cdot 4 (3)$ $116 \cdot 4 (3)$ $121 \cdot 3 (3)$ $122 \cdot 2 (3)$ $116 \cdot 4 (3)$ $120 \cdot 1 (4)$ $119 \cdot 1 (4)$ $120 \cdot 3 (4)$ $121 \cdot 8 (3)$ $121 \cdot 6 (3)$ $120 \cdot 5 (2)$ $120 \cdot 3 (2)$ $119 \cdot 2 (3)$ $121 \cdot 7 (3)$ $121 \cdot 7 (3)$ $121 \cdot 9 (3)$ $122 \cdot 4 (4)$ $120 \cdot 3 (3)$ $119 \cdot 5 (3)$ $119 \cdot 5 (3)$ $121 \cdot 0 (3)$ $119 \cdot 5 (3)$ $119 \cdot 2 (3)$ $121 \cdot 0 (4)$ $120 \cdot 1 (4)$ $120 \cdot 7 (4)$
01 011 016 01 01 01 02 03 04 02 03 04 02 02 02 02 02 02 02 02 02 02	C11 C C16 C C1 N N1 C C2 C C3 C C4 N N2 C C3 C C4 N N2 C C22 C C21 O O1 C C1 N N1 S	Clife Clife Clife N1 Value Clife Clife<	$\begin{array}{c} 1 \cdot 8 (5) \\ -82 \cdot 5 (4) \\ 93 \cdot 1 (3) \\ -104 \cdot 7 (3) \\ 169 \cdot 7 (3) \\ -64 \cdot 2 (4) \\ -80 \cdot 1 (3) \\ 141 \cdot 6 (3) \\ -69 \cdot 7 (4) \\ 6 \cdot 8 (4) \\ -131 \cdot 9 (3) \\ -148 \cdot 9 (3) \\ -103 \cdot 3 (3) \\ 34 \cdot 8 (2) \end{array}$	C1 C1 C3 C2	N1 S1 N1 S1 C2 N1 N1 S1 N1 S1 N1 S1 C4 N2 N2 S2 N2 S2	0102 C101 S1 0101 C102 C101 S2 0201 0202 C201 S2 0201 0202 C201	$\begin{array}{c} 164.5\ (2)\\ -80.7\ (2)\\ 91.8\ (3)\\ -161.7\ (2)\\ -32.0\ (2)\\ 82.9\ (2)\\ 144.0\ (2)\\ -179.3\ (2)\\ -49.1\ (2)\\ 65.6\ (3)\\ -83.3\ (3)\\ 45.5\ (2)\\ 175.7\ (2)\\ -69.6\ (3) \end{array}$

= 0.56 Å⁻¹, data not corrected for absorption, standard reflections 080 and 006, maximum change of $3 \cdot 1\%$ and $2 \cdot 5\%$ respectively, 3760 reflections with $I > 2 \cdot 5\sigma(I)$ used in calculations; solution by direct methods using *SHELX*86 (Sheldrick, 1986), refinement using *SHELX*76 (Sheldrick, 1976), H atoms located from difference Fourier map, refinement by full-matrix least-squares procedure on F magnitudes, 342 parameters. Refinement to final R = 0.044, S = 1.0614, unit weights. Largest peak on a final difference Fourier map 0.22, lowest trough $-0.26 \text{ e} \text{ Å}^{-3}$, $(\Delta/\sigma)_{\text{max}} = 0.29$. Scattering factors from SHELX76. The molecule and the numbering scheme are shown in Fig. 1, molecular packing in Fig. 2. Positional parameters and equivalent values of the anisotropic temperature factors for the non-H atoms are given in Table 1,* interatomic distances, angles and selected torsion angles in Table 2.

Related literature. The paper is a continuation of the study of the structure-biological activity relationship of oxazadibenzocycloalkenes. The title compound shows

neuroleptic activity (Glinka, 1986). Related studies: Stępień, Wajsman, Grabowski, Glinka & Perrin (1987), Olszak, Stępień, Wajsman, Grabowski, Glinka & Lecocq (1987).

This work was supported by project R.P.II.10 from the Polish Ministry of National Education.

References

- GLINKA, R. (1986). Structure-Activity Relationship in Dibenzooxadiazonine Systems. 9th Int. Conf. Med. Chem., Berlin, Federal Republic of Germany.
- OLSZAK, T. A., STĘPIEŃ, A., WAJSMAN, E., GRABOWSKI, M. J., GLINKA, R. & LECOCO, S. (1987). Acta Cryst. C43, 2169-2171.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELX86. Program for the solution of crystal structures from diffraction data. Univ. of Göttingen, Federal Republic of Germany.
- STEPIEŃ, A., WAJSMAN, E., GRABOWSKI, M. J., GLINKA, R. & PERRIN, M. (1987). Acta Cryst. C43, 2164-2165.

Acta Cryst. (1989). C45, 1267–1268

Structure of (+)-(1*R*,2*S*,3*S*)-3-Benzoyl-6,6-dimethyl-2-bicyclo[3.1.1]heptanecarboxylic Acid

By P. CHARPIN, M. NIERLICH, D. VIGNER AND M. LANCE CEA-CEN/SACLAY, DLPC/SCM, CNRS URA 331, 91191 Gif sur Yvette CEDEX, France

AND A. PELLET AND L. WARTSKI

Laboratoire des carbocycles, Université Paris-Sud, Bâtiment 420, CNRS URA 478, 91405 Orsay, France

(Received 9 February 1989; accepted 1 March 1989)

Abstract. $C_{17}H_{20}O_3$, $M_r = 272.35$, monoclinic, C2, a = 20.324 (3), b = 6.779 (1), c = 13.890 (2) Å, $\beta =$ $V = 1534 \cdot 1$ (5) Å³, Z = 4, $D_r =$ $126.72(1)^{\circ}$, $\mu =$ 1.18 Mg m^{-3} , λ (Mo K α) = 0.71069 Å, 0.0744 mm^{-1} , F(000) = 584, T = 296 K, final $R_F =$ 0.042 for 976 unique observed reflections. Pairs of molecules are held together across the twofold axis by the formation of two intermolecular hydrogen bonds between the carboxyl groups: the $O(1) \cdots O(2')$ distance is 2.628 (3) Å and the O(1)-H···O(2') angle 156 (6)°. The cyclohexane ring has an unusual conformation: five C atoms [C(1)-C(5)] are coplanar within the experimental uncertainty, with the sixth C atom [C(6)]1.1 Å out of this plane. The carboxyl and benzoyl groups are in trans positions with regard to the cyclohexane ring, as suggested by ¹H NMR data.

0108-2701/89/081267-02\$03.00

Experimental. Colourless crystal obtained by evaporation of an ether solution, $0.60 \times 0.50 \times 0.35$ mm, mounted on a glass fibre, Enraf-Nonius CAD-4 diffractometer, graphite-monochromatized Mo Ka, ω -2 θ method, lattice parameters from 25 reflections $(8 < \theta < 13^{\circ})$, three standard reflections measured every hour, no loss of intensity, 1600 measured reflections $(h \ 0 \rightarrow 24, k \ 0 \rightarrow 8, l - 16 \rightarrow 16)$ with $\theta < 25^{\circ}$, 1463 independent, 976 with $I > 3\sigma(I)$, Lp correction, no absorption correction, direct methods, refinement by full-matrix least squares using $w = 4F_o^2/[(\sigma I)^2 +$ $(pF_o^2)^2$ and F; all non-H atoms anisotropic. H atom for the carboxylic group [H(10), involved in hydrogen bonding] found on difference map and refined, all other H atoms included in the refinement at calculated positions (C-H = 0.95 Å, $B = 5 Å^2$) and not refined © 1989 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51743 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.